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Abstract

The conventional water network synthesis approach greatly simplifies wastewater treatment units by using fixed

recoveries, creating a gap for their applicability to industrial processes. This work describes a unifying approach

combining various technologies capable of removing all the major types of contaminants through the use of more

realistic models. The following improvements are made over the typical superstructure-based water network mod-

els. First, unit-specific short-cut models are developed in place of the fixed contaminant removal model to describe

contaminant mass transfer in wastewater treatment units. Short-cut wastewater treatment cost functions are also

incorporated into the model. In addition, uncertainty in mass load of contaminant is considered to account for the

range of operating conditions. Furthermore, the superstructure is modified to accommodate realistic potential struc-

tures. We present a modified Lagrangean-based decomposition algorithm in order to solve the resulting nonconvex

Mixed-integer Nonlinear Programming (MINLP) problem efficiently. Several examples are presented to illustrate the

effectiveness and limitations of the algorithm for obtaining the global optimal solutions.

1 Introduction

With increasing costs, diminishing quality of supplies, and stricter environmental effluent standards set forth by the

Environmental Protection Agency (EPA), water is playing an increasingly important role in the process industries.

The primary water uses are process water, cooling water, and boiler feed water, with each use being emphasized by

different industries. For example, the chemicals, petroleum refining, and metal sectors primarily use water for cooling,

while paper and pulp and food processing mostly use water for process use. In a study by Carbon Disclosure Projects

of 137 companies with total assets over $16 trillion, it has been reported that water has risen high on the corporate

agenda[1]. Eighty nine percent of responding companies have developed specific water policies, strategies, and plans.

Specifically, in the chemical sector, all ten companies surveyed recognize that there is a high growth potential for

processes and products that support more efficient water use and water recycling. Consequently, it is essential to

incorporate reuse schemes at the process design level for optimal water use.
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Mathematical programming approaches have been proposed to optimize water networks (WN) using NLP or

MINLP models. In a typical water network (WN) superstructure, water is supplied to water-using process units, and

then wastewater streams generated from these processes are treated in various treatment units. This versatile super-

structure (shown in Figure 1) considers systematic alternatives for water reuse, recycle, and recycle-reuse to minimize

freshwater consumption, or more generally, total network cost subject to a specified discharge limit[2]. Variations

of this superstructure have been considered in previous works for grassroot designs, namely, considering either only

water-using process units[3], focusing only on wastewater treatment units[4], or on both [2, 5–7]. In addition, retrofit

of industrial water systems has also been considered[8]. Another approach to WN synthesis is the pinch analysis in-

spired by heat- and mass-exchange network synthesis. Many studies have been performed to integrate wastewater

treatment systems in industrial plants using both approaches[9, 10]. Thorough reviews of mathematical programming

approaches to WN synthesis can be found in [11] and [12], and a review on insight-based methods is presented by

Foo[13].

Figure 1: Water network superstructure

The majority of the works related to water network (WN) optimization in the literature assume that the network

operates at steady state. Generally speaking, the standard formulation for a WN design problem consists of the

following information. The process units in the water network are usually characterized by concentration limits of the

entering stream and mass load of contaminants released from the unit, whereas the treatment units are characterized

by fixed recoveries (i.e. Coutj = βtjC
in
j , where βtj is the recovery of contaminant j in treatment unit t; Cinj and Coutj

are contaminant concentration levels at the inlet and the outlet of t). These models greatly simplify the water network

design, but create a gap for their applicability to industrial processes since more accurate treatment models should be

considered in the optimization of these water networks.

In order to gain a better understanding of the individual treatment units, it is useful to first consider the treatment

procedures of a centralized wastewater treatment plants[14]. In a typical plant, oil and grease are removed in the

pretreatment stage. Primary treatment involves the use of physical and chemical operations to remove suspended

particles. The next step is secondary treatment, where microorganisms are required to stabilize waste components.

Finally, tertiary treatment further removes nitrogen, phosphorus, heavy metals, and bacteria.
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The objective of this work is to gain a more thorough understanding of the trade-offs between the removal efficiency

of the treatment units and the cost of the units, as well as their impact on the WN design. This work combines various

technologies capable of removing the three major types of contaminants, namely, total dissolved solids (TDS), total

suspended solids (TSS), and organics (ORG), through the use realistic treatment unit models. A number of features

are considered in order to achieve this goal and they are described below.

First, unit-specific short-cut models based on the literature are developed to replace the fixed recovery model to

more accurately describe contaminant mass transfer in wastewater treatment units. Even though short-cut models

have been used in the context of wastewater treatment optimization problem, they usually pertain to specific treatment

technologies. For example, Saif et al[15] designed a reverse osmosis network for desalination processes. In contrast,

in this work we consider multiple types of treatment units for general processes. To this end, appropriate modeling

equations that can satisfactorily predict unit performance with reasonable computational complexity are presented.

Short-cut wastewater treatment cost functions (operating cost and investment cost) in the form of nonlinear func-

tions are incorporated into the model. The conventional network cost function usually consists of a linear operating

cost term and a concave capital cost term. The use of a more complex objective in this more rigorous model enables

the design of WNs that allow for trade-offs that better meet the need of their respective decision criteria.

In addition, since conditions for a given process may change during the course of the operation, we account for

the uncertain parameters through the use of a three-scenario model. This method was demonstrated by Karuppiah and

Grossmann[16], where the authors present a multiscenario nonconvex MINLP model that is a deterministic equivalent

of a two-stage stochastic programming model with recourse. For each of the best, worst, and nominal scenarios, the

uncertain parameters can take on a different set of values. This model then ensures that the final design solution is

feasible and optimal over the set of all three scenarios. This representation can effectively capture the wide range of

operating conditions without overly complicating the formulation.

Furthermore, the topology of the superstructure is modified to accommodate realistic potential structures. Faria

and Bagajewicz[17] explored the impact various topologies among the subsystems has on freshwater consumption

of the overall water network. Different types of contaminants present in the system are removed by considering the

Best Available Techniques (BAT)[18]. These provide the industrial standards for discharge of the major pollutant

groups and recommendations for their treatment as listed in Table 1. Since there are multiple treatment technologies

for the removal of each type of pollutants, the modified superstructure (Figure 2) allows for the selection of a sub-

set of BAT treatment technology through the use of disjunctions in the generalized disjunctive programming (GDP)

formulation[2].

The resulting multiscenario GDP formulation associated with the WN synthesis problem is computationally ex-
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Table 1: Best available techniques (BAT)

Suspended
Solids (TSS)

Heavy Metals
(HM)

Inorganic Salt
(TDS)

Organic Unsuitable
for Bio. Treat (ORG)

Organic Suitable for
Bio. Treat (BOD)

Sedimentation X X
Flotation X X
Filtration X X
Ultrafiltration X
Precipitation X
Ion Exchange X X
Reverse Osmosis X X X
Evaporation X X
Oxidation X
Adsorption X
Anaerobic Treatment X
Aerobic Treatment X

Figure 2: Superstructure with multiple treatment unit options

pensive to solve to global optimality. Various methods have been proposed to address the issue of bilinear terms

(products of flowrates and contaminant concentrations) and concave cost functions in the standard water network syn-

thesis problems[2, 19, 20]. The short-cut models presented in this paper introduce additional nonlinear and nonconvex

terms. To overcome the difficulty, we first reformulate the GDP problem into a nonconvex MINLP problem. We

then present a modified Lagrangean-based decomposition algorithm in order to solve the resulting MINLP problem

effectively. The formulation and the effectiveness of the algorithm are then illustrated through applications in metal

finishing and petroleum refining industries.

2 Problem statement

2.1 Problem description

In this manuscript we consider an integrated multi-contaminant WN with a given set of process units (PU , e.g.

scrubber, cooling tower), a set of treatment units (TU , e.g. reverse osmosis, sedimentation), freshwater sources

(e.g. lake, municipal treatment plant, water from process separations), and wastewater discharge sinks (e.g. river,
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centralized wastewater treatment plant, cooling tower). These units are interconnected using mixer units (MU ) and

splitter units (SU ) to form the superstructure, and are shown in Figure 1. Freshwater sources that vary in maximum

flowrate and pollutant levels are supplied to one or more of the process units. Once the streams are treated, they

are recycled to the process untis or sent to wastewater discharge sinks that must satisfy limits on either the pollutant

discharge concentration or on the discharge flowrate.

Each process unit has a fixed water flowrate requirement, upper limits on the inlet concentration level, and mass

load of contaminants released into the water stream. The mass load of contaminant is the uncertain parameter that can

take a range of values during process operation. We define its upper bound as the worst case scenario, its lower bound

as the best case scenario, and the average as the nominal scenario. In comparison to a single steady state scenario

design, the proposed model is defined over the three scenarios n ∈ N that account for the uncertainties in the loads

by introducing flexibility to the network design. This network flexibility can be achieved by increasing pipe capacity,

piping connections, or treatment unit capacity and removal efficiency.

The standard wastewater treatment units considered in this work include the followings: sedimentation, ultrafiltra-

tion, ion exchange, reverse osmosis, activated sludge, and trickling filter. By substituting the simplified models with

short-cut models more accurate design can be obtained. The goal is to select a subset of technologies that best fit the

treatment applications of the receiving wastewater streams.

2.2 General model

The general problem formulation (GDP-1) is an extension of earlier works by Karuppiah and Grossmann and Ahme-

tović and Grossmann[2, 16, 20]. The main difference here is that the fixed recovery treatment units are replaced by
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short-cut models presented in Section 4. The model (GDP-1) based on the superstructure in Figure (1) is as follows:

min. Costtotal = AR
∑
t∈TU

ICTUt +AR[
∑

i∈Pipe
(CPipei yi + ICPipei (F̂i)

δ]

+H
∑
w

∑
n

pnOC
FWFWw

n +H
∑
n

pn
∑

i∈Pipe
OCPipeFin +

∑
n

pnOC
TU
tn

s.t. Fkn =
∑
i∈min

Fin ∀m ∈MU, k ∈ mout,∀n ∈ N

FknCkjn =
∑
i∈min

FinCijn ∀j,∀m ∈MU, k ∈ mout,∀n ∈ N

Fkn =
∑
i∈sout

Fin ∀s ∈ SU, k ∈ sin,∀n ∈ N

Cijn = Ckjn ∀j,∀s ∈ SU, i ∈ sout, k ∈ sin,∀n ∈ N

Fkn = Fin = PPUp ∀p ∈ PU, i ∈ pin, k ∈ pout,∀n ∈ N

PPUp Ckjn + Lpjn × 103 = PPUp Cijn ∀j,∀p ∈ PU, k ∈ pin, i ∈ pout,∀n ∈ N

∨
r=1,...,RTt



Yrt

hn(drt, Fin, Cijn) = 0

gn(drt, Fin, Cijn) ≤ 0

ICTUt = f1(drt)

OCTUtn = f2(drt, Fin, Cijn)


∀j,∀t ∈ TU, i ∈ tin ∪ tout,∀n ∈ N

Yrt ∈ {True, False}

F̂i ≥ Fin ∀i,∀n ∈ N

yi ∈ [0, 1] ∀i

FMIN
i yi ≤ F̂i ≤ FMAX

i yi ∀i

FMIN
i ≤ Fin ≤ FMAX

i ∀i,∀n ∈ N

CMIN
ij ≤ Cijn ≤ CMAX

ij ∀j,∀i,∀n ∈ N

(GDP-1)

where yi are binary variables to indicate existence of piping connection i; Fin and Fkn are flowrates (t/h) of any

stream i and k in the superstructure respectively, in scenario n; F̂i is the maximum flowrate capacity of pipe i, Cijn

and Ckjn are concentrations (ppm) of contaminant j, PPUp are the process unit water flowrates, Lpjn are the mass load

of contaminant j in unit p in scenario n (kg/h). In the disjunctive formulation, Yrt indicates if technology r is chosen

for unit t, drt is the design variable associated with r and t. The constraints consist of a set of contaminant mass

balances in the mixer units, splitter units, process units, and treatment units(hn(•), gn(•)). Note that for the set of

splitters SU , there is a subset of initial splitters SUw for which Fwkn = FWw
n , w ∈ W , where W is set of freshwater

sources.
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2.3 Objective function

The objective function of the problem is to minimize the total cost of the network (Costtotal). It consists of the

annualized investment cost and the expected operating cost. The investment cost is scenario independent and is given

by the sum of treatment unit capital costs (ICTUt ) and pipe investment costs (the second term in the objective function).

CPipei are the fixed charge cost coefficients ($) associated with pipe existence, and ICPipei are the investment cost

coefficients of pipes, and δ is the associated cost exponent. The expected operating cost of the network represents

the operating cost for the selected a network design over all three scenarios, each with a given probability pn. The

term includes freshwater cost, pumping cost, and treatment unit operating cost. OCFW,w are the cost coefficients of

freshwater sources ($/t), OCPipe is the pumping cost coefficient ($/t), and OCTUtn is the treatment unit operating cost.

H is the operating hours in a year (hr/year), and AR is the annualized factor for investment cost (year−1).

Treatment unit cost equations are greatly simplified in previous works on WN optimization. Specifically, the

treatment unit capital costs are usually modeled as a concave function of the inlet flow, and the operating cost as a

linear function of the inlet flowrate as shown in Equation 1.

ICt = CICt(Fi)
α

OCt = COCtFi

(1)

where CICt and COCt are cost coefficients for investment cost and operating cost, respectively. In this work, we

incorporate treatment unit cost correlations that are function of design variables such as area or volume of the unit to

reduce the gap between the true total cost of the network and the objective obtained from the simplified optimization

model.

3 Illustrative example

In order to demonstrate the advantage of performing multi-scenario optimization, we present an illustrative example

with two process unit/two sets of treatment units (two options each)/two contaminants system with data given in Table

2. We solve the example using the worst case scenario model (i) and the three-scenario model (iii). The worst case

scenario model optimizes over scenario (n1) only. To obtain an accurate comparison between the two solutions, we

solve an additional three-scenario model (ii) subject to piping connectivity and flowrate capacity bound obtained from

the worst case scenario model (i).

The resulting network costs are presented in Table 3, where it can be seen that the worst case design (i) operating

in the 3 scenarios (ii) is $22,820 more expensive than the design that was optimized for the 3 scenarios (iii). As shown
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Table 2: Illustrative example data

(a) Process units

Flowrate (ton/h) Discharge Load (kg/h) Cmax
in (ppm)

n1 n2 n3
A B A B A B A B

PU1 40 1.1 1.7 1 1.5 0.8 1.3 0 0
PU2 50 2 2 1.7 1.8 1.5 1.6 50 50

(b) Treatment units

Options Removal Ratio (%) IC($) CO($/ton)
n1 n2 n3

A B A B A B

TU1 OP1 90 0 95 0 99 0 16800 1
OP2 80 0 90 0 98 0 4800 0.5

TU2 OP1 0 80 0 90 0 95 12600 0.0067
OP2 0 90 0 95 0 99 36000 0.067

in Figure 3, both cases (i) and (iii) select Option 2 for TU1 and Option 1 for TU2. The difference lies in the number

of piping connections - 8 removable pipes in the superstructure are determined by model (i) vs 12 removable pipes in

model (iii). A removable pipe is a piping connection between a mixer unit and a splitter unit. As a result, case (iii)

allows for additional flexibility. Specifically, it allows for the bypass stream (PU1, discharge mixer unit) in the best

scenario (n3). The bypass stream is not selected in the worst-scenario model. Thus, the flow is redirected to PU2 and

treatment units, increasing the treatment cost.

Table 3: Illustrative example optimization results

(i) Worst case (ii) Comparison with three-scenario (iii) Three-scenario
# of removable pipes 8 8 12
Annualized IC ($/yr) 39,426.50 39,430.60 39,821.43
Operating cost ($/yr) 634,742.00 526,398.20 503,187.22
Total cost ($/yr) 674,161.40 565,828.80 543,008.65

(a) (b)

Figure 3: Illustrative example result: (a) Worst case scenario (b) Three-scenario

The example was solved with BARON[21] and the computational statistics are presented in Table 4. The large

CPU time required in the three scenario case clearly indicates that a suitable decomposition scheme is required for

these problems.
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Table 4: Computational statistics for illustrative example

(i) Worst case (iii) Three-scenario
# of constraints 229 575
# of continuous vars 161 431
# of integer vars 24 24
CPU time (s) 25 1800∗

Optimality gap (%) 4.98 15.6
∗Time limit

4 Wastewater treatment unit short-cut models

The purpose of this section is to describe a set of common treatment units mentioned previously, and to consider their

performance as well as important design considerations. Treatment unit models with various levels of detail have been

reported in literature. The models reported here aim to describe each unit adequately while minimizing computa-

tional complexity. To the knowledge of the authors these models have not been incorporated into WN superstructure

optimization. A list that summarizes the unit-specific variable names is presented in the nomenclature section.

For the sake of clarity, in this section we denote treatment unit inlet flowrate by Q0 (m3/day), outlet flowrate by Q

(m3/day), inlet contaminant concentration by Sj0 (ppm), treated outlet contaminant concentration by Sj (ppm), con-

taminant j removal ratio byRcj , and flow recovery ratio byRr. The recoveryRr is assumed to be 1 for sedimentation,

ion exchange, and trickling filter. They are related as follows.,

Q = RrQ0

Sj = (1−Rcj)Sj0
(2)

4.1 Reverse osmosis

Reverse osmosis (RO) is a pressure-driven membrane treatment process mainly used in seawater and brackish de-

salination applications. A high-pressure feed stream flows across the surface of a semi-permeable material. Due to a

pressure differential between the feed and permeate sides of the membrane, a portion of the feed stream passes through

the membrane. The permeate stream exits at nearly atmospheric pressure, while the concentrate remains at nearly the

feed pressure. The salt rejection coefficient (RcTDS) limits the membrane performance and its value is fixed for a spe-

cific membrane. The value of the recovery ratio (Rr) usually lies between 0.5 and 0.9. A scheme of the RO process is

shown in Figure 4.

The performance of the system depends mainly on two parameters in the RO process design, they are the trans-

membrane pressure ∆P and the membrane area Amemb. The selected type of membrane element is the spiral bound

FILMTEC BW30-400 (DOW) that offers high flow and rejection. The membrane properties are specified by the
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Figure 4: Reverse osmosis diagram[14]

manufacturer and they are shown in Table 5.

Mass transfer in RO involves a diffusive mechanism such that separation efficiency is dependent on influent solute

concentration, pressure, and water flowrate. The permeate flowrate across the membrane is determined by the osmotic

pressure law (3),

Q = AmembNkm(∆P −∆π) (3)

The transmembrane pressure (∆P ) is calculated as in (4)[22],

∆P = Pf − Pp −
∆Pdrop

2
(4)

where Pf is the feed stream pressure, Pp is the permeate stream pressure.

Assuming the feed stream is a dilute solution of salts, the osmotic pressure π can be approximated by the Van’t

Hoff equation in (5),

∆π =
φRT

M
(STDS0 − STDS) (5)

It is also assumed that the concentration polarization is negligible so that the concentration at the membrane surface

is considered to the be equal to the concentration at the inlet of the RO treatment (Cf).

4.2 Ion exchange

Ion exchange (IX) is a reversible reaction in which a charged ion in solution is exchanged for a similarly charged

ion electrostatically attached to an immobile solid particle. In practice the raw water is commonly passed through a

bed of resin. When the bed becomes saturated with the exchanged ion, it is shut down and regenerated by passing
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Table 5: Characteristics of the FILMTEC™BW30-400 membrane element

Parameter Symbol Unit Value
Membrane rejection coefficient Rc 0.98
Membrane water permeability km t/(day m2 Pa) 6.48 ×10−7

Membrane area A m2 37
Gas constant R kJ/(kmol K) 8.31
Max pressure drop in vessel ∆Pdrop bar 3.4
Number of ions in solution φ 2
Molar mass of the dissolved solids M g/mol 58.44

a concentrated solution of the presaturant ion back through the bed. The saturation of the resin is shown in the

breakthrough curve (Figure 5a). At the break point, the effluent concentration exceeds the design criteria and the

column needs to be regenerated. Figure 5b shows a scheme of a typical IX column configuration.

(a) (b)

Figure 5: Ion exchange unit diagrams: (a) Ion exchange breakthrough curve, (b) Ion exchange column configuration
diagram: (i) Loading cycle (ii) Regeneration cycle[23]

For the complete removal of ions the water stream must pass through cationic and anionic resins in series or

through a unique column containing a mixture of both. The performance of the system depends on many parameters

such as the operating capacity (q), the service flow rate (SFR) or the surface loading rate (SLR), which determines

the pressure drop in the resin. BV is the volume of water treated per volume of resin, and it relates the concentration

gradient with the capacity of the resin bed,

BV = 1000
q

STDS − STDS0

(XMWca + (1−X)MWan) (6)

where X is the mass fraction in inlet water of ion wanted to be removed, MWca is the molar mass of the cation, and

MWan is the molar mass of the anion.

SFR is determined from the following equation, and the typical SFR ranges from 8 to 40 bed volume per hour
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(BV/h).

SFR =
BV

CT
(7)

where CT is the contact time.

The process design variables can be modeled with the equations in (8),

V =
Q0

SFR
(8a)

Vww =
q

S0 − S
(8b)

A =
Q0

SLR
(8c)

where V is the resin volume, Vww is the volume of wastewater treated, and A is the resin cross-sectional area.

Some design considerations for determining model parameters are as follows[14]. The pressure drop in the bed

should be kept in the range of 35-70 kPa, with a maximum value of 135 kPa. This results in a maximum SLR of 880

m/day, depending on the resin. Regarding the operating parameters, SFR should be kept in the range of 8 to 40 BV/h

to ensure an adequate contact time and to avoid an early breakthrough.

4.3 Sedimentation

Sedimentation is used as a preliminary step to reduce TSS level in wastewater streams. Typically, 50 to 70% of TSS

and 25 to 40% of BOD can be removed using primary sedimentation tanks [14]. The standard sedimentation tanks

are of circular or rectangular design, whose selection is determined by a number of factors. Figure 6 is a schematic

drawing of a horizontal flow tank.

The efficiency of sedimentation tanks is affected by a number of factors including eddy currents formed by the

inertia of the incoming fluid, thermal convection currents, and density currents caused by cold or warm water along

the bottom of the tank and warm water flowing across the top of the tank.

Typical removal performance (Rcj) of a rectangular tank can be modeled by a hyperbolic function (9) of the

detention time (t) and contaminant (j) [24].

Rcj = 1− t

aj + bjt
(9)
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Figure 6: Horizontal flow sedimentation diagram[14]

where a, b are empirical constants presented in Table 6.

Table 6: Typical values for the empirical constants at 20 °C

Contaminant a b
BOD 0.018 0.020
TSS 0.0075 0.014

The design of the rectangular tank can be calculated by the following equations,

A = Q/OR

D = tQ/A

NC =
A

LW

(10)

where OR is the overflow rate, A is the area, D is the depth, and NC is the number of clarifiers required.

4.4 Ultrafiltration

Ultrafiltration (UF) is a pressure driven membrane filtration process. The feed stream is a suspension, or two-phase

system, in which the dispersed solid phase to be separated may include sediment, algae, bacteria, protozoa, viruses, or

colloids as shown in Figure 7 in which comparisons are presented with microfiltration (MF), nanofiltration (NF), and

reverse osmosis (RO). The primary goal of membrane filtration is to produce a product stream (water) from which the

targeted solids have been almost completely removed. The predominant removal mechanism in UF is size exclusion

so the process can theoretically achieve perfect exclusion of particles regardless of operational parameters such as

influent concentration and pressure. UF membranes cover a wide range of molecular weight cutoffs (MWCOs) and

13



Table 7: Characteristics of a typical UF membrane

Parameter Symbol Unit Value
Membrane water permeability km t/(day m2 Pa) 1.3704 × 10−5

Active area of membrane element A m2 33
Max pressure drop in vessel ∆P bar 0.4-1.5

pore sizes. Operational pressures range from 70 to 700 kPa, depending on the application [14].

Figure 7: Membrane processes comparison[14]

As shown in Figure 7, the UF process shares some common features with the RO process. The material balances

must be satisfied and the feed and permeate concentration are related through the rejection coefficient (2). The re-

covery ratio is assumed to lie between 0.5 and 0.9. Pure water transport across a clean porous membrane is directly

proportional to the transmembrane pressure (∆P ). The number of units (N ) required is based on the permeate flowrate

(Q) as shown in equation (11),

Q = N∆PkMAmemb (11)

Fouling of the membrane may occur during the filtration, which implies an additional resistance to the water flux

through the membrane. For the sake of simplicity, we do not consider membrane fouling in the mathematical model.

Typical UF membrane characteristics [23] are shown in Table 7.

4.5 Activated sludge

Activated sludge (AS) is an aerobic slurry commonly used in wastewater treatment for the removal of soluble organic

matters. Microorganisms in the wastewater convert organic matter to biomass and other components in the complete-
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(a) (b)

Figure 8: Organics removal units schematics [14], (a) Activated sludge, (b) Two-stage trickling filter[14]

mix suspended growth reactor. Once the stream exits the reactor, the suspended solids (sludge) are partially removed in

a clarifier, while the rest is recycled to the reactor. The removed sludge then goes through a series of sludge treatment

to be discharged to the environment. This process is shown in Figure 8a.

An important parameter that determines the system performance is the solid retention time (SRT ), which is used

to characterize the average time the activated-sludge solids remain in the system [24]. The effluent soluble substrate

concentrations in (12), S, is only a function of the SRT and kinetic coefficients, and is neither a function of the influent

soluble substrate concentration nor the sizes of the reactor. However, the size of the reactor needs to scale with SRT

in order to avoid system upsets.

S =
Ks[1 + (kd)SRT ]

SRT (Y k − kd)− 1
(12)

where Ks,kd,Y ,k, and fd are kinetic parameters and their values are given in Table 8. The process can be modeled

with the equations in (13),

X = (
SRT

τ
)[

Y (S0 − S)

1 + (kd)SRT
]

XT = (
SRT

τ
)[

Y (S0 − S)

1 + (kd)SRT
] + (fd)(kd)XSRT +

(X0,i)SRT

τ

PXT ,V SS =
XTV

SRT

PX,bio = PXT ,V SS −QX0,i

(13)

where X is the biomass concentration in the aeration tank,XT is MLVSS concentration, X0,i is the influent nbVSS

concentration, Px,bio is biomass wasted, and PXT ,V SS is total sludge wasted daily.

In general, the operating cost of the AS is higher than the cost of other secondary treatment processes primarily

because of the need to supply molecular oxygen using mechanical aerator, which can be energy-intensive. The oxygen
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Table 8: AS kinetic parameters

Symbol Unit Value
Ks g COD/m3 10
kd g VSS/(g VSS day) 0.1
Y g VSS/g COD 0.4
k g VSS/(g VSS day) 12.5
fd g VSS/g VSS 0.15

consumption (Ro) is given by the following correlation:

Ro = Q(S0 − S)− 1.42Px,bio (14)

The sizing of the unit is modeled as follows,

V = τQ

Acl =
QXT

SLR

(15)

where V is the reactor volume, τ is the resident time, and Acl is the clarifier area.

4.6 Trickling filter

Trickling filter (TF) is a circular packed bed of media covered with a biological film of microorganisms, which operates

using attached-growth process. Liquid wastewater is distributed over the top of the unit by a rotary distributor. Oxygen

diffuses into the media, and treatment of the wastewater stream is accomplished by the biofilm in the filter. Organic

removal rate is related to the available surface area and contact time of the wastewater with the surface [14].

A two-stage trickling filter system is the most typical process used that improves the performance of the unit. The

second stage provides additional contact between the organics and the microorganisms on the filter media. The two

stages could have different media as shown in Figure 8b. The organic removal ratio (RcORG) can be related to the

removal efficiency of stage one (E1) and stage two (E2) as follows,

RcORG × 100 = E1 + E2(1− E1

100
) (16)

The empirical design equations for BOD removal were developed for rock trickling filters based on the performance

at 34 plants at military installations treating domestic wastewater [23]. For a single-stage filter or the first stage of a
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two-stage rock filter, the efficiency at 20◦C is,

E1 =
100

(1 + 0.4432
√

W1

V F )

W1 = QS0
1kg

1000g

(17)

where W1 is BOD loading applied to the first-stage filter. For the purpose of this work, we ignore the effect of

wastewater temperature on the BOD removal efficiency.

The recirculation factor F represents the average number of passes of the raw wastewater BOD through the filter.

The 0.1 factor accounts for the empirical correlation of the decreasing biodegradability with increasing number of

passes([14]). The recycle ratio Rrcy is typically between 0 and 2.

F =
1 +Rrcy

(1 + 0.1Rrcy)2
(18)

The second stage efficiency is given as follows:

E2 =
100

(1 + 0.4432
1−E1/100

√
W2

V F )

W2 = (1− E1)W1

(19)

where W2 is BOD loading applied to the second-stage filter.

As with all aerobic treatment operations, an adequate supply of air is crucial to provide efficient treatment of the

wastewater stream. The formulation (20) has been developed by Dow Chemical to estimate oxygen consumption (Ro)

for trickling filter applications[24],

Ro = 20(0.8e−9LB + 1.2e−0.17LB )

LB = QS0/V
(20)

where LB is BOD loading to filter.

Important design variables include the volume of the filter media and the area of the clarifier. The depth, D, of

17



each filter is typically within 3 - 11.4 m. Other design parameters include,

OR = −0.0556D2 + 0.7056D − 0.7889

A = Q/OR

V = AD

Acl = Q/19.92

(21)

where OR is overflow rate, Acl is the clarifier area, and A, D, V are area, depth, and volume of the filter media,

respectively.

4.7 Economics of treatment units

The cost correlations for standard wastewater treatment units can be found in several sources[25, 26]. In addition, we

have derived cost equations as functions of unit sizes using the software Superpro Designer [27] through curve fitting.

Superpro features end-of-pipe treatment process units for pollution prevention studies.

The investment cost terms ICt are functions of equipment sizing such as area and volume, whereas operating cost

OCt include unit throughput, electricity (ce,$0.0981/kWh), material replacement, oxygen consumption(cO2,$0.02/kg)

and waste disposal cost (cd, $0.0001/kg). Nt represent the number of units required to achieve the separation. The

equations for the various units are presented below, and their corresponding cost coefficients, ct, and cost exponents,

αt, for the various units are collectively presented in Table 9. H is the number of working hours in a year.

Table 9: Typical cost correlation values

c1 c2 c3 c4 c5 c6 α1 α2

Reverse Osmosis 121.35 7802.6 830
Ion Exchange 8400.7 1e-13 -2e-7 0.1517 39162 0.3474
Sedimentation 8483.8 1.69 11376 0.6
Ultrafiltration 138.9 303.47 400
Activated Sludge 241.17 8485.9 4.58 36295 3.32 5842 0.6416 0.6
Trickling Filter -2.4234 1731.6 69391 8485.9 3.3445 43678 0.6

Reverse osmosis The capital cost is a function of the membrane area, ARO, and the operating cost consists of mem-

brane replacement cost, pumping electricity cost, and disposal cost. LTm is the membrane element lifetime (5

years), ηp is the pump efficiency (0.8), and ρRO is the feed density (1000 kg/m3). The operating cost of the RO
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unit is high due to the energy consumption of the high pressure pump.

ICRO = (cRO1 ARO + cRO2 )NRO

OCRO =
cRO3 NRO
LTm

+
ceH∆PFin
ηpρRO

+ cTDSd HFwRO
(22)

Ion exchange The capital cost is a function of the resin volume, VIX , needed for the treatment. The operating cost

includes the regenerating cycle (chemicals, brine disposal), which is a polynomial function of the throughput.

ICIX = cIX1 (VIX)α
IX
1

OCIX = cIX2 (Fin)3 − cIX3 F 2
in + cIX4 Fin + cIX5

(23)

Sedimentation The capital cost is a function of the area, ASE , and the operating cost is a function of throughput and

the number of rectangular clarifiers NCSE .

ICSE = cSE1 A
αSE

1

SE

OCSE = NCSE(
cSE2 Fin
ORSE

+ cSE3 )
(24)

Ultrafiltration The capital cost mainly depends on the membrane area,AUF , needed for the separation. The operating

cost include membrane replacement cost, electricity cost, and disposal cost. Since the transmembrane pressure

in UF is not so high as in RO, the operational cost is less dependent of the electricity consumption.

ICUF = (cUF1 AUF + cUF2 )NUF

OCUF =
cUF3 NUF
LTm

+
ceH∆PFin
ηpρUF

+ cTSSd HFwUF
(25)

Activated sludge The capital cost is a function of aeration basin volume VAS and clarifier area AclAS . The operating

cost has three terms: maintenance cost as a function of throughput, oxygen consumption, and sludge disposal

cost.

ICAS = cAS1 (VAS)α
AS
1 + cAS2 (AclAS)α

AS
2

OCAS = (cAS3 Fin + cAS4 + cAS5 Fin + c6) + cASO2RoAS + cORGd PXT ,V SS

(26)

Trickling filter The capital cost is a function of filter area ATF and clarifier are AclTF . Similar to the activated

sludge, the operating cost has three terms: maintenance cost as a function of throughput, oxygen consumption,
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and sludge disposal cost.

ICTF = 2(cTF1 A2
TF + cTF2 ATF + cTF3 ) + cTF4 Acl

αTF
1

TF

OCTF = (cTF5 Fin + cTF6 ) + cTFO2RoTF (Cin − Cout)Fin + cORGd (Cin − Cout)Fin
(27)

As can be seen from these equations, the correlations (22)–(27) include bilinear and concave terms that are nonlinear

and nonconvex. The cost model gains in accuracy despite the computational complexities compared to the simple

equations in (1). To see this difference more clearly, we can compare the performance of activated sludge and trickling

filter for the removal of organic contaminants shown in Figure 9. The investment cost as a function of inlet concentra-

tion for activated sludge under fixed operating parameters is shown in Figure 9a. It is clear that there is a significant

increase in investment cost (9.89%) over the range of concentration considered. Figure 9b shows that trickling filter

removal efficiency is also a function of inlet concentration when the recycle ratio is fixed to 0.2. Finally, Figure 9c

we compare the operating costs of activated sludge and trickling filter as functions of flowrate only. The figure shows

that there exists a crossover point between the two curves, which indicates that it is incorrect to estimate the operating

cost as a linear function of the flowrate. As a result, the simplified model, which is only dependent on the flowrate

across the treatment unit, may lead to suboptimal, and possibly to solutions with the incorrect selection of treatment

technology.

(a) (b) (c)

Figure 9: Organic treatment unit shortcut model comparison

5 Computational strategies

5.1 Strategy for global optimal solution

The resulting multi-scenario GDP problem (GDP-s) is given by the model in (GDP-1), where hn(•) and gn(•) are

replaced by the short-cut equations in (2)-(21), and f1(•) and f2(•) are defined by the cost equations (22)-(27). Due

to the presence of nonconvexities, sub-optimal solutions may be obtained if local solvers are used. Finding efficiently
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the global optimal solution in the proposed multi-scenario model would allow to solve the more accurate short-cut

formulation.

The multi-scenario model (GDP-s) gives rise to a block diagonal structure, in which the design variables (drt) are

complicating variables in that they need to be accounted for in all scenarios. By defining the copy variables dmrt, F̂
n
i ,

yni , for each scenario, the problem can be reformulated as one with complicating constraints as shown in equation

(28).

dnrt = dn+1
rt ∀t ∈ TU, r = 1, ..., RTt,∀n ∈ N,n < |N |

F̂ni = F̂n+1
i ∀i,∀n ∈ N,n < |N |

yni = yn+1
i ∀i,∀n ∈ N,n < |N |

(28)

This allows the application of the Lagrangean decomposition algorithm [28].

The proposed algorithm shown in Figure 10 involves an outer problem and an inner problem. The outer problem

determines a global lower bound from a special relaxation problem (RP ) and fixes the selection of treatment unit

options. The inner problem is then constructed for a fixed set of treatment unit technologies. The inner loop is

solved with the Lagrangean decomposition algorithm and iterates between a lower bounding problem (SP1)-(SPN )

and an upper bounding problem (P ′′). Since the predicted lower bounds are rigorous but exhibit dual gaps in the

inner problem, global optimality can only be guaranteed within the predicted global upper and lower bounds after a

maximum number of iterations.

5.2 Subproblem descriptions

Problem (P ) is a nonconvex MINLP that results from applying the hull reformulation[29] to (GDP-s). The MINLP

relaxation problem (RP ) is obtained by replacing all the nonconvex terms present in (P ) with linear or convex un-

derestimators so as to yield a valid lower bound. See Appendix for a summary of relevant nonconvex terms and their

convex estimators. Problem (SPn) are MINLPs obtained by decomposing (P ) into |N | scenarios using Lagrangean

decomposition to obtain subproblems(SP1)-(SP|N |). The complicating design variables drt, Fni , ICTUt are replaced

by their copy variables dnrt, F̂
n
i , ICTUtn , respectively, as in constraints (28). The linking constraints (28) are dualized
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Figure 10: Decomposition scheme

and transferred to the objective function as shown in equation (29).

min. zn = pnAR[
∑
t∈TU

ICTUtn +
∑

i∈Pipe
(CPipei yni + ICPipei (F̂ni )δ)]

+HpnOC
FWFWn +Hpn

∑
i∈Pipe

OCPipeFin + pnOC
TU
tn

+
∑
i

(λfin − λ
f
i(n−1))F̂

n
i +

∑
i

(λyin − λ
y
i(n−1))y

n
i

+
∑
i

(λdrtn − λdrt(n−1))d
n
rt +

∑
t∈TU

(λICtn − λICt(n−1))IC
TU
tn

n = 1, ..., |N |

(29)

Problem (P–s) can help to improve the solution quality of the upper bounding problem (P ′). (P–s) is an NLP

that represents the simplified multi-scenario model. It applies effective contaminant removal ratios βntj and flow

recovery ratios Rrnt from the subproblems (SPn), where Fout = RrtFin. Problem (P ′) is the NLP upper bounding

problem in the inner iteration resulted from fixing all the integer variables in the original problem (P ). In problem

(Lam) the Lagrangean multipliers are updated using a hybrid algorithm based on the combination of cutting-plane

and subgradient strategies described in Oliveira et al[30].
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5.3 Algorithm

The steps of the proposed algorithm are as follows:

0. Initialization Determine bounds on variables drt and F̂i based on the numerical data provided in each water net-

work. Set all multipliers λfin,λyin, and λdrtn to zero. Set outer iteration count m = 1, inner iteration count

k = 0.

1. Global Upper Bound Fix all binary variables yi to 1, and solve the MINLP problem (P ) in terms of the binary

variables Yrt for the treatment units using non-global MINLP solvers such as DICOPT or a global solver such as

BARON and LINDOGlobal with a large optimality gap (e.g. 70%). If the time limit is exceeded, fix the binary

variable Yrt to 1 for a subset of treatment technologies and solve problem (P ) again.

2. Global Lower Bound Solve the MINLP problem (RP ) to determine the global lower bound. Once the solution is

obtained, fix the binary variables, Yrt, for the inner problem.

3. Inner Problem Set k = 1.

i. Solve the MINLP (SPn) for each scenario n ∈ N to global optimality for the fixed treatment selection.

Three potential situations could result from this step. First, if all the subproblems are feasible and are

solved to ε1-tolerance within time limit, then we obtain for the selected treatment units a lower bound

solution ZLLB by taking the sum of the subproblems’ objective values z∗n. If the problem is not solved

within ε1-tolerance in the specified time limit, then we convexify the subproblem as in problem (RP ) to

form (rSPn), which can then be solved using a non-global MINLP solver. The third situation arises when

any of the sub-problems is found to be infeasible, in which case the set of treatment selection is eliminated.

ii.(optional) Solve (P–s) to local optimality.

iii. The binary variables yi in subproblem (P ′) are fixed to zero if the flowrate capacity, F̂i, for a given pipe i

takes a value of zero in (P–s). Solve the upper bounding problem (P ′) to local optimality. Update ZLUB .

iv. Check for convergence of the inner problem. If ZLUB < ZGUB , then update ZGUB = ZLUB . If (ZLUB −

ZLLB)/ZLUB < ε2 or if ZLLB > ZGUB , end inner loop.

v. Update the Lagrangean multipliers in (Lam). k = k + 1 as described in [30].

4. Convergence Check global convergence criteria (ZGUB −ZGLB)/ZGUB < ε, if the algorithm does not meet the

ε-convergence criterion, add an integer cut (30) to (RP ) to eliminates the current set of Yrt. Reset all multipliers
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Figure 11: Example 1 network superstructure

to 0. m = m+ 1.

∑
(r,t)∈Bm

(1− Yrt)+
∑

(r,t)∈Nm

Yrt ≥ 1 ∀m = 1, ...,M

Bmrt = {(r, t)|Y mrt = 1} Nm
rt = {(r, t)|Y mrt = 0}

(30)

6 Numerical examples

Three water network examples are provided to demonstrate the formulation and decomposition algorithm. Prob-

lem (GDP-1) was automatically reformulated as an MINLP using GAMS/EMP (Extended Mathematical Program-

ming)[31], which is a modeling framework for automated mathematical reformulation. The MINLP models are for-

mulated using GAMS 24.0[32] and solved on an Intel Core i7 2.93 GHz machine with 4.00 GB memory. CPLEX was

used for the MILP problems, and DICOPT[33], LINDOGlobal[34] and BARON 11.1[21] are used to solve the MINLP

problems. Note that while DICOPT is a non-global solver, LINDOGlobal and BARON are global optimization solvers.

6.1 Example 1: illustrative example with short-cut treatment unit models

In this example, we consider the problem structure presented in the illustrative example in Section 3. The process

unit data are the same, but we now incorporate short-cut models of treatment units for TSS and TDS removal. TU1

involves as choices reverse osmosis and ion exchange for the removal of TDS, and TU2 involves sedimentation and

ultrafiltration for the removal of TSS. The superstructure is shown in Figure 11.

The full problem and the decomposition algorithm subproblems’ model statistics are shown in Table 10. The

full MINLP, which is obtained with the hull reformation (GDP-s)[35] problem is solved using BARON to arrive at
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the solution of $434,164.59 in 2,132 CPUs with a 5% optimality gap. Then the problem is solved using the decom-

position algorithm to global optimality. The first step is to obtain a god initial solution from problem (P ). This is

accomplished by using LINDOGlobal terminating the search as soon as a feasible solution is found. The global upper

bound $462,712.88 is obtained in 93 CPUs. The convex MILP relaxation (RP ) provided a global lower bound of

$352,346.66. Ion exchange is chosen to remove TDS and ultrafiltration to remove TSS. For these choices the MINLP

subproblems (SPn) is each solved with BARON with a 5% optimality tolerance. They each yield an objective value

of $146,711.84, $142,964.20, and $142,619.09. Summing the values from the three scenarios yields a lower bound of

$432,295,12. We then solve the NLP optional step (P–s) to reach a solution of $381,083.40, a lower bound for this

configuration. The objective value of this problem is not crucial to the algorithm since the treatment units are simpli-

fied, instead, we use this step to obtain stream connectivities for the NLP problem (P ′) with that fixed configuration

to obtain an upper bound. The NLP problem (P ′) yields a solution of $433,173.72 (shown in Figure 12a), which is

a new upper bound. Since the lower bound ($352,346.66) lies below this upper bound, we add an integer cut to the

convex MILP relaxation (RP ). Since this problem is infeasible within the updated global upper bound, the search is

terminated in a total of 471 CPUs. Thus, the decomposition algorithm is able to reduce the computational effort by

almost a factor of five (471 CPUs vs. 2,132 CPUs).

Table 10: Example 1: Subproblem model statistics

Subproblem Formulation Type UB/LB Solution Type # Binary Vars # Cont Vars # Constraints # Non-convex Terms
(P ) MINLP UB Global 24 465 610 198
(SPn) MINLP LB Global 20 203 206 86
(P − s) NLP - Local - 373 547 144
(P ′′) NLP UB Local - 435 430 198

(a) (b)

Figure 12: Example 1:(a) Short-cut model optimal solution (b) Simplified model optimal solution

In order to demonstrate the advantage of using short-cut models, we can compare its optimal solution with the

result from the simplified model. To make the comparison on the same basis, the first step is to optimize the WN with
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simplified model, then in the second step, the WN with short-cut model is optimized with fixed network structure from

step one. The optimized WN structure obtained using simplified models is shown in Figure 12b. As can be seen, the

main difference is that the treatment unit chosen for TDS removal is reverse osmosis for the simplified model WN

and ion exchange for the short-cut model WN. There are also two piping connections that are different in the result,

namely, from PU1 to TU1 and from TU1 to PU2. The cost of the network increased by 2.5%, from $430,157 for

configuration in Figure 12a to $440,884 for configuration in Figure 12b. Note that the problem is optimized to within

1% optimality gap in order to ensure the validity of the comparison. Hence the short-cut WN has a cost of $430,157

instead of $433,174 as presented in the detailed decomposition algorithm steps.

Furthermore, the recoveries have a direct impact on treatment cost in practice. Thus, the purpose of using short-cut

models is to calculate the wastewater treatment recoveries through optimization, whereas simplified models assume

that they are fixed. Both specified recoveries in the simplified models and the calculated recoveries in the short-cut

models are presented in Table 11. Column S1 represent the removal ratio specified in the simplified models; S2

shows the calculated recoveries from optimizing short-cut models with the fixed configuration in Figure 12b; and S3

represents the recoveries from directly optimizing short-cut models. From the table, we can see that the removal ratio

upper bounds are reached (90% for IX and 99% for UF) or nearly reached (99% for RO) for the selected units due to

the rigorous disposal requirement (10 ppm TDS and 20 ppm TSS).

Table 11: Example 1: Recovery comparison

Treatment Unit n1 n2 n3
S1 S2 S3 S1 S2 S3 S1 S2 S3

TDS Removal RO 80 98 - 90 98 - 99 98 -
IX 70 - 90 80 - 90 90 - 90

TSS Removal SE 50 - - 60 - - 70 - -
UF 70 99 99 85 99 99 99 99 99

6.2 Example 2: metal finishing industry wastewater treatment

The next example comes from a metal finishing industry located in Turkey[4]. Steel wheel production, tractor produc-

tion, engine assembly shop, and spring production are the four main production lines that are involved. Each process

results in a wastewater streams with various level of TSS, heavy metal (HM), TDS, and BOD. The worst, nominal,

and best scenario concentration values are given in Table 12. This example considers only wastewater treatment net-

work (no PU included) whose superstructure is shown in Figure 13. We apply the short-cut treatment models for the

removal of TSS, TDS, and BOD. For HM removal we assume fixed recoveries. Note that TDS has the highest average

concentration among the four groups of contaminant, thus it gives rise to the most difficult removal. On the contrary,

26

linliny
Rectangle

ig0c
Cross-Out

ig0c
Cross-Out

ig0c
Inserted Text
specification for the water discharge.

ig0c
Cross-Out

ig0c
Inserted Text
gap instead of 5%

ig0c
Cross-Out

ig0c
Inserted Text
steps where a 5% tolerance was used.



Figure 13: Example 2: Metal finishing wastewater treatment network superstructure

HM is the easiest contaminant to removal.

Table 12: Example 2: Metal finishing data

Stream Flowrate (ton/h) Concentration (ppm)
TSS HM TDS BOD

n1 n2 n3 n1 n2 n3 n1 n2 n3 n1 n2 n3
Metal Containing 5.25 195 150 105 96.59 74.3 52.01 2405 1850 1295 78 60 42
Oily 5.084 546 420 294 0 0 0 3250 2500 1750 260 200 140
General Waters 3.96 39 30 21 14.3 11 7.7 1690 1300 910 58.5 45 31.5
Dye Containing 3.3 136.5 105 73.5 6.5 5 3.5 6890 5300 3710 1950 1500 1050
Discharge Limit 120 30 300 80

The corresponding MINLP using the hull reformulation[35] has 1,229 equations, 47 discrete variables, and 961

continuous variables. Solving (P ) directly does not yield a feasible solution using standard solvers such as DICOPT,

KNITRO, or SBB. To facilitate computation, we fix all yi to 1 (i.e. all piping connections exist) and Yrt to 1 for

ultrafiltration, reverse osmosis, activated sludge, and microfiltration. With these fixed values, we can obtain a global

upper bound with an objective value of $304,405 in 27.6 CPUs using LINDOGlobal with a 70% optimality tolerance.

Problem (RP ) is solved subsequently and a global lower bound with an objective value of $98,790 is obtained in

12.6 CPUs. The lower bound solution fixes ultrafiltration, ion exchange, activated sludge, and microfiltration as the

technology selection for the inner iteration. In the operating range of this example, ion exchange has a higher capital

cost and a worse removal performance. However, its operating cost is lower than that of the reverse osmosis. In

addition, both technologies are capable of meeting the discharge limit. Thus, it is possible that the selections from the
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Figure 14: Example 2: Metal finishing water network configuration

lower bound outperforms the initial technologies chosen for (P ). For the new choices the MINLP subproblems (SPn)

is each solved with BARON with a 10% optimality tolerance. They yield an objective value of $131,690, $52,954,

and $46,226. Summing the values from the three scenarios yields a lower bound of $230,870. We then solve the NLP

optional step (P–s) to obtain the stream connectivities. Based on the configuration, the NLP problem (P ′) yields an

upper bound of $234,820. With the integer cut to eliminate the current configuration, the subsequent outer problem

(RP ) is found to be infeasible; thus, we have reached the global optimum. The entire algorithm requires 2,308.5

CPUs, where 1,608.0 CPUs is used to solve the lower bounding problem. In comparison, the original problem (P )

cannot be solved to optimality in the resource limit (7200 CPUs) with LINDOGlobal and BARON.

The resulting configuration is shown in Figure 14. Note that the recovery ratio in the ion exchange unit is chosen

to be the lower bound 0.5, which implies that it is cheaper to dispose rather than to treat the stream. Also, since the

overall streams have HM concentration less than the discharge limit, no HM removal is required.

6.3 Example 3: petroleum refinery water use

We consider a modified refinery case study as the final example[6, 36] and the units involved are shown in Figure 15.

The primary water sources are freshwater and purified water. In addition, crude oil often carries emulsified water, and

can be considered as a third process water source. Two sinks are considered for discharge, a centralized wastewater

treatment facility on site and the nearby river. Five water-using process units are considered in this study. They are

desalination, column condensation, steam generation, cooling water, and general consumption. The water quality and

flowrate requirement of these processes are summarized in Table 13. The third water source, crude oil train, has a

maximum flowrate of 15 ton/h, and the wastewater treatment plant can accept a maximum of 360 ton/h of wastewater.

Reverse osmosis and ion exchange remove salt from the streams, and trickling filter and activated sludge are used to

remove organic content of the streams.
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Figure 15: Example 3: Refinery process water system superstructure

Table 13: Example 3: Petroleum refinery data

(a) Process units

Flowrate (ton/h) Loss (ton/h) Discharge Load (kg/h) Cmax
in (ppm)

n1 n2 n3
TDS ORG TDS ORG TDS ORG TDS ORG

Boiler 25 18 3.5 1.21 2.07 1.10 0.64 0.99 10 1
Condensate 22.5 0 4.28 146.23 3.94 125.55 3.6 104.87 10 1
Cooling tower 1000 405 615 219 310.9 110 6.8 1 2500 220
General consumption 10 0 9.5 70 8.29 61.1 7.08 52.19 300 50
Desalter 85 0 153 544 136.07 510.31 119.14 476.63 200 100

(b) Concentration limit (ppm)

Sources Discharge sinks
Fresh water Purified water Crude oil train River Wastewater treatment plant

TDS 50 10 135 50 364
ORG 15 0 45 200 759

The resulting MINLP has 1,768 equations, 1,331 continuous variables, and 85 binary variables. Note that the

problem size is larger than that of Example 2. However, solving the problem directly using LINDOGlobal yields an

optimal solution of $1,906,264 with 5% optimality gap in 209 CPU s. The reason that the problem can be solved effec-

tively without the decomposition algorithm can be seen in the resulting network configuration as shown in Figure 16.

Trickling filter is chosen to remove ORG, and the highest removal ratio, RORGc = 90%, is selected. The consumption

of freshwater is 360.5 t/h, and the consumption of purified water is 47.5 t/h, which is a 734.5 t/h reduction had reusing

and recycling not been performed. First, the wastewater streams are reused and recycled within the network instead of
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Figure 16: Example 3: Optimal network configuration for the refinery water system

being discharged to the wastewater sinks. Also, no salt-removal unit is selected in this configuration, which is due to

the high TDS tolerance level at the inlet stream of the cooling tower, as well as the high rate of evaporation loss in the

cooling tower. The cooling tower then reuses most of its outlet stream, leading to a cooling loop that is more efficient

than a once-through design.

7 Conclusion

By considering the use of short-cut models for treatment units that remove TDS, TSS, and organics, we are able to

exploit the trade-offs between treatment cost and removal efficiency of the units. The model (GDP-1) is developed to

accommodate the modifications in the architecture and formulation of the treatment units. In order to solve the result-

ing formulation to global optimality, we have presented a Lagrangean-based decomposition algorithm that is tailored

to the water network problem. Several examples are presented to demonstrate the effectiveness of the algorithm in

improving the quality and computation effort of the solution.

Nomenclature

Reverse Osmosis

∆Pdrop Pressure drop along the membrane channel, Pa
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∆π Osmotic pressure difference across the membrane, Pa

N Number of membranes

Pf Pressure at the feed side of the membrane, Pa

Pp Pressure at the permeate side of the membrane, Pa

Ion Exchange

A Resin cross-sectional area, m2

BV Volume of water treated per volume of resin, Lwater/Lresin

CT Contact time, h

MWan Molar mass of anion, kg/kmol

MWca Molar mass of cation, kg/kmol

q Operating capacity of the resin, eq/Lresin

SFR Service flow rate, m3water/(m3resinh)

SLR Surface loading rate, m/h

V Resin volume, m3

Vww Volume of waste water treated

X Mass fraction in inlet water of ion wanted to be removed

Ultrafiltration

∆P Transmembrane pressure

µ dynamic viscosity of water

Amemb Membrane area

kM membrane resistance coefficient

Sedimentation

A Volume of the filter media, m2
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D Depth, m

NC Volume of the filter media, m2

OR Overflow rate, m3/m2day

t Nominal detention time, h

Activated Sludge

τ Residence time, day

Acl Clarifier area, m2

Px,bio Biomass wasted, g/day

PXT ,V SS Total sludge wasted daily, g/day

Ro Oxygen consumption, g/day

SRT Solid retention time, day

V Aerator volume, m3

X Biomass concentration in the aeration tank, g/m3

XT MLVSS concentration, g/m3

X0,i Influent nbVSS concentration, g/m3

Trickling Filter

A Area of the filter media, m2

Acl Clarifier area, m2

D Depth, m

E1 Fraction of BOD removal for first stage, %

E2 Fraction of BOD removal for second stage, %

F Recirculation factor

LB BOD loading to filter, kg BOD/m3d
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OR Overflow rate, m/hr

Ro Oxygen consumption, kg O2/kg BOD applied

Rrcy Recirculation ratio

V volume of filter media, m3

W1 BOD loading applied to the first-stage filter, kg/d

W2 BOD loading applied to the second-stage filter, kg/d
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Appendix: Convex envelopes

• Bilinear terms [37]: FC → f

f ≥ FminC + CminF − FminCmin

f ≥ FmaxC + CmaxF − FmaxCmax

f ≤ FminC + CmaxF − FminCmax

f ≤ FmaxC + CminF − FmaxCmin


(31)

• Concave term: Fα → Θ

Θ ≥ (Fmin)α + (
(Fmax)α − (Fmin)α

Fmax − Fmin
)(F − Fmin) (32)
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•
√
V → Vnew (From trickling filter formulation (17) and (19))

V 2
new − V ≤ 0 (33)
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